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Abstract. Today, one of the most common natural hazards in the world is flood-
ing, and over the years flooding has caused significant loss of life and property
damage. Remote sensing technology and data derived from satellite imagery
are useful for knowing the extent of flood, which is useful for flood risk man-
agement. An important prerequisite for flood risk management is the existence
of spatial and temporal information on the extent of the flood. In general, this
spatio-temporal information from remote sensing data is uncertain. The objec-
tive of our work is to model the spatial and temporal uncertainties relating to the
date and extent of floods, in order to provide information and advice to the right
measurements to adapt to flood problems. The estimate of the date and extent of
the flood is based on the analysis of the extents of other floods that have occurred
in the same area. There is always a level of spatial-temporal uncertainty inherent
in such estimates.

1 Introduction
Today, one of the most common natural hazards in the world is flooding (Ha et al., 2021),

and over the years flooding has caused significant loss of life and property damage (Cai et al.,
2021). In 2019, 361 events occurred worldwide, of which flooding was the largest event with
a total of 170 incidents, representing 47% of the total (Miau and Hung, 2020). These events
affected around 3 billion people and caused 5100 deaths (Miau and Hung, 2020). These floods
are caused by many factors such as climate change (Zhang et al., 2021), the socio-economic
factor, geology, topography (Das, 2020), land use change (Hu et al., 2020) and spatial and
temporal variabilities (Merwade et al., 2008) which become major factors of uncertainty in the
management of flood risks.

Remote sensing technology and data derived from satellite imagery are useful for map-
ping flooded areas (Shen et al., 2019), which is useful for flood risk management (Moreira
et al., 2021). Due to their wide spatial coverage and their great temporal availability, they can
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facilitate this type of spatio-temporal analysis. An important prerequisite for flood risk man-
agement is the existence of spatial and temporal information on the actual extent of the flood
(Kurte et al., 2019). In general, this spatio-temporal information from remote sensing data is
uncertain.

The main sources of uncertainty in spatio-temporal information are: cloud cover during
periods of heavy flooding, mixed pixel and image quality, sub-optimal solar lighting, spatial
and temporal resolution. Many of the probabilistic and non-probabilistic methods have been
used for the modeling and management of uncertainties such as interval theory, fuzzy set theory
(Goguen, 1973), probability theory, possibility theory (Zadeh, 1978; Dubois, 1988) and belief
function theory (Dempster, 1967; Shafer, 1976).

The objective of our work is to model the spatial and temporal uncertainties using the
theory of belief functions to detect the extent of flooding, in order to provide information and
advice to the right measurements for adapt to flood problems.

This paper is structured as follow: Section 2 recalls the main concepts of belief functions
theory, Allen’s relations and the Region Connection Calculus 8 (RCC-8), Section 3 details our
proposed approach for managing uncertain and imprecise spatio-temporal information, Section
4 presents an experimental study of our approach before concluding in section 5.

2 Background

In this section, we give a brief recall on the theory of belief functions (This section is
mainly taken from the article (Chehibi et al., 2018)), and on the qualitative relations.

2.1 Theory of belief functions

The theory of belief functions, also called Dempster-Shafer theory, was first introduced by
Dempster (Dempster, 1967) and mathematically formalized by Shafer (Shafer, 1976). This
theory models imprecise, uncertain and missing data.

In the theory of belief functions, a frame of discernment, noted
Θ = {H1, ...,HN}, is a set of N exhaustive and mutually exclusive hypotheses Hi, 1 ≤
i ≤ N . only one of them is likely to be true.

The power set, 2Θ = {A/A ⊆ Θ} = {∅, H1, ...,HN , H1 ∪ H2, ...,Θ}, enumerates 2N

sub-assemblies of Θ. It includes not only hypotheses of Θ, but also, disjunctions of these
hypotheses.

The true hypothesis in Θ is unknown; thus, a degree of belief is assessed to subsets of 2Θ

reflecting our degree of faith on the truth of each subset of 2Θ.
A basic belief assignment (bba), also called mass function, is noted mΘ and defined such

that:

mΘ : 2Θ → [0, 1]

mΘ(∅) = 0∑
A⊆Θ

m(A) = 1
(1)
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The mass mΘ(A) represents the degree of belief on the truth of A ∈ 2Θ. When mΘ(A) > 0,
A is called focal element.

2.2 Qualitative relations
2.2.1 Allen’s interval algebra

Allen’s interval algebra (Allen, 1983) is one of the most known and used formalisms in
temporal reasoning. A significant part of the work on temporal representation and reasoning
is concerned with time intervals. It is an algebra based on 13 primitive and mutually exclusive
relations that can be applied between two time intervals A = [a, a

′
] and B = [b, b

′
]. These

relationships are: before (b), after (bi), meets (m), met by (mi), overlaps (o), overlapped by (oi),
starts (s), started by (si), during (d), contains (di), finishes (f), finished by (fi) and equals (e).
Each of these relations corresponds to a particular order of the four bounds of the two intervals.
For example, the statement A overlaps B (A o B) corresponds to (a < b)∧(b < a

′
)∧(a′

< b
′
).

2.2.2 The Region Connection Calculus 8 (RCC-8)

Region connection calculus 8 (RCC-8) (Randell et al., 1992) is one of the most known
and used formalisms in spatial representation and reasoning developed by Randell, Cui, and
Cohn. A significant part of the work on qualitative spatial reasoning (QSR) is concerned with
the RCC-8 model. This model describes the possible spatial relations between two spatial
regions in the form of eight basic topological relations. These relationships are: DC(a,b) (a is
disconnected from b), EC(a,b) (a is externally connected with b), PO(a,b) (a partially overlaps
b), TPP(a,b) (a is a tangential proper part of b), NTPP(a,b) (a is a nontangential proper part of
b), TPPi(a,b) (a has a tangential proper part b), NTPPi(a,b) (a has nontangential proper part b),
EQ (a,b) (a is equal to b).

3 Proposed approach
Our proposed approach includes four phases: the uncertainty representation phase, the

modeling of uncertain relationships between events, the measurement of similarity and the
aggregation of events phase.

3.1 Representing of Uncertainty
In this section, the uncertainty of spatial, temporal and spatiotemporal events is represented

and modeled using intervals. The quantification of this uncertainty is based on the theory of
belief functions.

3.1.1 Spatial uncertainty

Spatial uncertainty SU refers to the uncertainty of the extent of the flood. It is due to several
possible flood extents. This uncertainty is represented using an interval-based method. This
representation (fig 1) consists of a less uncertain inner interval SLU of the extent of the flood
and a more uncertain outer interval SMU . The degrees of uncertainty of the two intervals are
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modeled by a mass function m where:
SU = {SMU = [SMU1, SMU2],m(SMU );SLU = [SLU1, SLU2],m(SLU )}
with SLU ⊆ SMU and m(SMU ) = m̄(SLU ) = 1−m(SLU )

FIG. 1 – Spatial uncertainty

3.1.2 Temporal uncertainty

Temporal uncertainty TU refers to the uncertainty of the date of the flood. This is due
to several possible dates of the flood. This uncertainty is represented using an interval-based
method. This representation (fig 2) consists of a less uncertain inner interval TLU of the date
of the flood and a more uncertain outer interval TMU . The degrees of uncertainty of the two
intervals are modeled by a mass function m where:
TU = {TMU = [TMU1, TMU2],m(TMU );TLU = [TLU1, TLU2],m(TLU )}
with TLU ⊆ TMU and m(TMU ) = m̄(TLU ) = 1−m(TLU )

FIG. 2 – Temporal uncertainty
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3.1.3 Spatio-temporal uncertainty

Spatio-temporal uncertainty STU refers to the uncertainty of the date and extent of the
flood. This is due to several possible dates and extents of the flood. This uncertainty is repre-
sented using an interval-based method. This representation (fig 3) consists of a less uncertain
inner interval STLU of the date and extent of the flood and a more uncertain outer interval
STMU . The degrees of uncertainty of intervals are modeled by a mass function m where:
STU = SU ⊗ TU = {STLU ;STMU ;STLMU ;STMLU}

FIG. 3 – Spatio-temporal uncertainty

with STLU = {(SLU ⊗ TLU );m(STLU ) = m(SLU ) ∗m(TLU )}
STMU = {SMU ⊗ TMU ; m(STMU ) = m(SMU ) ∗m(TMU )}
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TAB. 1 – Spatio-temporal relations
Temporal relation Spatial relation Spatio-temporal relation
before (b),
after (bi) Disconnected (DC) Disconnected (DC)

meets (m),
met by (mi) Externally connected (EC) Externally connected (EC)

overlaps (o),
overlapped by (oi) Partially overlaps (PO) Partially overlaps (PO)

starts (s),
finishes (f) is a tangential proper part (TPP) is a tangential proper part (TPP)

started by (si),
finished by (fi) has a tangential proper part (TPPi) has a tangential proper part (TPPi)

during (d) is a nontangential proper part (NTPP) is a nontangential proper part (NTPP)
contains (di) has a nontangential proper part (NTPPi) has a nontangential proper part (NTPPi)
equal(e) equal (EQ) equal (EQ)

STLMU = {SLU ⊗ TMU , m(STLMU ) = m(SLU ) ∗m(TMU )}
STMLU = {SMU ⊗ TLU , m(STMLU ) = m(SMU ) ∗m(TLU )}

3.2 Modeling the uncertain relationships of flood events

The nature of the relationship between two flood events depends on the nature of their spa-
tial and temporal relationships. Uncertain relationships between spatial intervals representing
flood extent are modeled using the RCC-8 model and uncertain relationships between tem-
poral intervals representing date/time of flooding are modeled using Allen’s interval algebra.
The possible relations between intervals are deduced from their structure and the correspond-
ing mass values. Table 1 presents some possible spatio-temporal relationships that may exist
between two flood events and which may be useful for the analysis and evaluation of flood
events. These spatio-temporal relationships are represented using RCC-8 model.

For simplicity, we assume as example that ST1U is a fully uncertain flood event (uncertain
spatio-temporal event) and ST2 is a definite flood event.
ST1U = {S1U ⊗ T1U}
where S1U = {S1MU = [E3, E6], m(S1MU ), S1LU = [E4, E5]; m(S1LU )};
and T1U = {T1MU = [D3, D6]; m(T1MU ); T1LU = [D4, D5]; m(T1LU )}.

ST2 = {S2 ⊗ T2}
where S2 = [E1, E2]; m(S2) = 1;
and T2 = [D1, D2]; m(T2) = 1.

With: D2 > D3 / D2 < D4 and E2 > E3 / E2 < E4

Thus, the uncertain spatio-temporal relationship between the two flood events is:
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PO(ST1U , ST2), m(ST1MU )
DC(ST1U , ST2), m(ST1LU )}

3.3 Similarity of flood events
In many applications especially for flood risk management, comparing the similarity of

spatio-temporal events can help in making a judgment or decision. Also, if two events are
similar, it will be very useful to merge them and then have more reliable information. We
propose here our method of measuring the similarity of flood events. This method is based on
their spatio-temporal relationships and the masses of beliefs of the intervals corresponding to
these events. Let I1 and I2 be two intervals, and any intersection between them is the interval
INT . We base the similarity measure on the relationship between the length of INT and the
length of I1 and I2. We therefore have for Sim(I1, I2)
Sim(I1, I2) = (|INT |/|I1|+ |INT |/|I2|)/2
Here, we are interested in the evaluation of the similarity between two uncertain Flood events,
ST1U and ST2U . Since the inner intervals of events are more certain, we can rely on their
intersection to determine the degree of similarity between events using the following rule:
{Sim(ST1LU , ST2LU ) = (Sim(S1LU , S2LU ) + Sim(T1LU , T2LU ))/2}
The outer intervals can also be taken into account to determine the similarity of events, but as
a secondary factor since they are less certain. It should be noted that if we have a strong belief
in inner intervals, we can overlook the external intervals’ similarity and say that E1 and E2 are
thought to be quite comparable events.
For some types of relationships between flood events, the similarity value can be calculated
without measuring the length of the intersection between the intervals, for example:
1) TPP (S1LU , S2LU ) or NTPP (S1LU , S2LU ):
|INT | = |S1LU | and Sim(S1LU , S2LU ) = (|S1LU |/|S1LU |+ |S1LU |/|S2LU |)/2 = (1 +
|S1LU |/|S2LU |)/2
2) TPPi(S1LU , S2LU ) or NTPPi(S1LU , S2LU ):
|INT | = |S2LU | and Sim(S1LU , S2LU ) = (|S2LU |/|S1LU |+ |S2LU |/|S2LU |)/2 = (1 +
|S2LU |/|S1LU |)/2
Also, depending on the nature of the relationship between two events, the similarity value can
be inferred directly:
1)DC(S1LU , S2LU ) So Sim(S1LU , S2LU ) = 0
2)EQ(S1LU , S2LU ) So Sim(S1LU , S2LU ) = 1

3.4 Aggregation of events
If the events’ similarity is assessed and they appear to be considerably similar, then a

merger or combination of events could be considered. As a result, we obtain the aggregated
event ST12U . The merge operation is performed by applying the operator max on the upper
limits of the inner and outer intervals of the two events and min on the lower limits. The mass
of a combined interval is equal to the mass of the first interval multiplied by the mass of the
second interval. To satisfy the condition of sum of belief masses, it is necessary to normalize
them to be equal to 1.
For example, let:
ST1U = {S1MU = [170, 300], m(S1MU ); S1LU = [200, 280], m(S1LU );
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T1MU = [10, 20], m(T1MU ); T1LU = [13, 19], m(T1LU )} and
ST2U = {S2MU = [190, 350], m(S2MU ); S2LU = [220, 330], m(S2LU );
T2MU = [14, 25], m(T2MU ); T2LU = [17, 22], m(T2LU )}
therefore:
S12MU = [min[170, 190], max[300, 350]]; m(S12MU ) = m(S1MU ) ∗m(S2MU )
S12LU = [min[200, 220], max[280, 300]]; m(S12LU ) = m(S1LU ) ∗m(S2MU )
T12MU = [min[10, 24], max[20, 25]]; m(T12MU ) = m(T1MU ) ∗m(T2MU )
T12LU = [min[13, 17], max[19, 22]]; m(T12LU ) = m(T1LU ) ∗m(T2MU )
Then:
S12MU = [170, 350]; m(S12MU )
S12LU = [200, 330]; m(S12LU )
T12MU = [10, 25]; m(T12MU )
T12LU = [13, 22]; m(T12LU )
Then:
ST1U = S12MU = [170, 350]; mnorm(S12MU ), S12LU = [200, 330]; mnorm(S12LU );
T12MU = [10, 25]; mnorm(T12MU ), T12LU = [13, 22]; mnorm(T12LU )

4 Experiments
Our area of interest is Chad. In fact, this country suffers from frequent floods. These

floods cause displacement of residents and loss of life and material damage in several areas,
especially those located on the shores of Lake Chad Or those crossed by the Logone or Chari
rivers.

Floods are uncertain spatio-temporal events. Estimating when the flood occurred and the area
affected by the flood (the extent of the flood) is not obvious enough. This is why we use Re-
mote sensing technology and data derived from satellite imagery.

The extent of the flood is created by detecting changes in Sentinel-1 (SAR) data. To do this,
we use different satellite images. These images are obtained by determining time intervals and
not time points before and after the flood. In fact, this allows selecting a sufficient number of
tiles to cover the area of interest. These intervals are of the form:
< Before_start, Before_end; After_start, After_end >.

In this work we are only interested in the area of the flood extent. At this point, our goal
is to estimate the area of flood extent in 2015 based on the information extracted from these
images (those from 2016 to 2021). This means that these images will be our source of infor-
mation.

These information indicated that:
1) The most flood events occurred during the month of August with a mass equal to 0, 57, and
the remaining events occurred during the months of June, July and September with a mass
equal to 0, 43. Thus, August is the most certain time interval for a flood event to occured in
2015, with m([01/08/2015− 31/08/2015]) = 0, 57 and m([01/06/2015− 31/09/2015]) =
0, 43.
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2) Most of the floods events affected between 150000 hectares and 450000 hectares with a
mass equal to 0, 71, and the remaining events affected either less than 150000 hectares or more
than 450000 hectares with a mass equal to 0, 29. Thus, We can estimate the extent of the flood
that occurred in 2015 with m([150000−450000]) = 0.71 and m([100000−700000]) = 0, 29.

In this work and in order to have more relevant information on the extent and date of the flood-
ing in 2015, a second source of information will be used. This second source is a database of
floods that occurred in Chad between 2012 and 2015.

The information in this database indicated that:
1) The most flood events occurred during the month of August with a mass equal to 0, 68, and
the remaining events occurred during the months of July, September and October with a mass
equal to 0, 32. Thus, August is the most certain time interval for a flood event to occur, with
m([01/08/2015− 31/08/2015]) = 0.68 and m([01/07/2015− 31/10/2015]) = 0.32.
2) Most of the floods affected between 100000 and 500000 hectares, and the remaining events
affected either less than 100000 hectares or more than 500000 hectares. Thus, We can esti-
mate the extent of the flood that occurred in 2015 with m([100000 − 500000]) = 0.53 and
m([5000− 800000]) = 0.47.

So, we now have two spatio-temporal information about the uncertain flood event, provided by
two different sources of information. According to the first source of information:
ST1U = {S1MU = [100000− 700000], m(S1MU ) = 0, 29;
S1LU = [150000− 450000], m(S1LU ) = 0.71;
T1MU = [01/06/2015− 31/09/2015], m(T1MU ) = 0, 43;
T1LU = [01/08/2015− 31/08/2015], m(T1LU ) = 0, 57}
According to the second source of information:
ST2U = {S2MU = [5000− 800000], m(S2MU ) = 0.47;
S2LU = [100000− 500000], m(S2LU ) = 0.53;
T2MU = [01/07/2015− 31/10/2015], m(T2MU ) = 0.32;
T2LU = [01/08/2015− 31/08/2015], m(T2LU ) = 0.68}

The relationship between the two outer spatial uncertain information is: NTTP (S1MU , S2MU )
The relationship between the two inner spatial information is: NTTP (S1LU , S2LU )
Then the relationship between the two spatial information is: NTTP (S1U , S2U ).
The relationship between the two outer temporal uncertain information is: T1MU O T2MU

The relationship between the two inner temporal uncertain information is: T1LU E T2LU

Then The relationship between the two temporal uncertain information is: T1MU O T2MU

with m(O(T1MU , T2MU )) = 0, 43 or T1LU E T2LU with m(O(T1MU , T2MU )) = 0, 57

Since, the relationship between the two inner spatial information is: NTTP (S1LU , S2LU ),
then the similarity value can be calculated without measuring the length of the intersection
between the intervals:
Sim(S1LU , S2LU ) = (1 + |S1LU |/|S2LU |)/2 = (1 + (450000 − 150000)/(500000 −
100000))/2 = 0.875
Since, the relationship between the two inner temporal information is: T1LU E T2LU , then
the similarity value can be inferred directly:
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Sim(S1LU , S2LU ) = 1
We note that we have a strong belief in inner intervals, so, we can overlook the external inter-
vals’ similarity and say that ST1U and ST2U are thought to be quite comparable events.

Since, the events’ similarity is assessed and they appear to be considerably similar, then a
merger or combination of events could be considered.
ST1U = {S1MU = [100000−700000], m(S1MU ) = 0, 29; S1LU = [150000−450000], m(S1LU ) =
0.71;
T1MU = [01/06/2015 − 31/09/2015], m(T1MU ) = 0, 43; T1LU = [01/08/2015 −
31/08/2015], m(T1LU ) = 0, 57}
and
ST2U = {S2MU = [5000−800000], m(S2MU ) = 0.47; S2LU = [100000−500000], m(S2LU ) =
0.53;
T2MU = [01/07/2015 − 31/10/2015], m(T2MU ) = 0.32; T2LU = [01/08/2015 −
31/08/2015], m(T2LU ) = 0.68)}
therefore:
S12MU = [min[100000, 5000], max[700000, 800000]]; m(S12MU ) = m(S1MU )∗m(S2MU ) =
0.29 ∗ 0.47
S12LU = [min[150000, 100000], max[450000, 500000]]; m(S12LU ) = m(S1LU )∗m(S2MU ) =
0.71 ∗ 0.53
T12MU = [min[01/06/2015, 01/07/2015], max[31/09/2015, 31/10/2015]]; m(T12MU ) =
m(T1MU ) ∗m(T2MU ) = 0.43 ∗ 0.32
T12LU = [min[01/08/2015, 01/08/2015], max[31/08/2015, 31/08/2015]]; m(T12LU ) =
m(T1LU ) ∗m(T2MU ) = 0.57 ∗ 0.68
Then:
S12MU = [5000, 800000]; m(S12MU ) = 0, 1363
S12LU = [100000, 500000]; m(S12LU ) = 0, 3763
T12MU = [01/06/2015, 31/10/2015]; m(T12MU ) = 0, 1376
T12LU = [01/08/2015, 31/08/2015]; m(T12LU ) = 0, 3876
Then:
ST1U = {S12MU = [5000, 800000]; mnorm(S12MU ) = 0.38,
S12LU = [100000, 500000]; mnorm(S12LU ) = 0.62;
T12MU = [01/06/2015, 31/10/2015]; mnorm(T12MU ) = 0.375,
T12LU = [01/08/2015, 31/08/2015]; mnorm(T12LU ) = 0, 625}

The combined spatio-temporal information estimates that the date of the uncertain flood event
is during the month of August 2015 with a degree of certainty equal to 0.62 and that the extent
of the flood is between 100000 and 500000 hectares with a certainty equal to 0.625. Which is
really true, in fact, according to the database, a flood event happened on 30/08/2015 and the
extent of this flood is evaluated at 118000 hectares.

5 Conclusions
Since the flood is an event with spatial and temporal uncertainties, we propose in this pa-

per a novel approach based on belief function theory to represent and manage the combined
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spatio-temporal uncertainty of a flood. Belief function theory is chosen because it is an ideal
solution for modeling and quantifying non-specific uncertainty and because of the combining
rules that allow merging information from multiple sources.
In our approach, spatial, temporal and spatio-temporal information are represented with inter-
vals. Each interval consists of a more certain inner part and a more uncertain outer part. In
fact, this interval structure provides considerable flexibility for the representation of subjective
uncertainty. The degree of the belief on each part is expressed by means of a mass function.
In this work, the relationships between uncertain flood events are deduced based the relation-
ships between spatial and temporal information and their corresponding mass. These relation-
ships are useful for the analysis and evaluation of flood events.
Our proposed approach also provides some similarity measurement rules that allow to compare
the similarity of flood events and then help to make a judgment or decision.
If the events’ similarity is assessed and information from multiple sources appear to be con-
siderably similar, then a combination of flood events could be considered. The purpose of the
combination operation is to obtain more reliable information about the uncertain flood event.
The proposed approach for modeling and managing uncertain floods were conducted at the
Chad site. Chad was chosen as our area of interest because of the frequent floods that sweep the
country and cause displacement of residents and loss of life and material damage. Sentinel-1
images and information from a database are used in our experiments. The experimental results
prove the effectiveness of the proposed approach. It shows also how coupling Dempster-Shafer
approach with qualitative relationships offers a useful solution for modeling and managing
spatio-temporal uncertainty of flood events.
As future work, first, we plan to more rigorously address the similarity of flood events part.
For example, according to our approach, if the relation between two flooding events is discon-
nected or meets, then their degree of similarity is 0 although the meets relation seems to reflect
a small similarity between the events because their distance contrary to the disconnected rela-
tionship is zero. This notion of distance is therefore to be taken into consideration for our future
work. Then, we plan to extend our proposed approach for the 2-dimensional (2D) problem.

References

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843.

Cai, S., J. Fan, and W. Yang (2021). Flooding risk assessment and analysis based on gis and
the tfn-ahp method: a case study of chongqing, china. Atmosphere 12(5), 623.

Chehibi, M., M. Chebbah, and A. Martin (2018). Independence of sources in social networks.
In International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, pp. 418–428. Springer.

Das, S. (2020). Flood susceptibility mapping of the western ghat coastal belt using multi-
source geospatial data and analytical hierarchy process (ahp). Remote Sensing Applications:
Society and Environment 20, 100379.

Dempster, A. P. (1967). The annals of mathematical statistics. Upper and Lower Probabilities
Induced by a Multivalued Mapping 38, 325–339.



Modeling and Management of Spatio-temporal1 Uncertainty of Flood Events

Dubois, D. (1988). Théorie des possibilités; applications a la représentation des connaissances
en informatique. Technical report.

Goguen, J. (1973). La zadeh. fuzzy sets. information and control, vol. 8 (1965), pp. 338–353.-
la zadeh. similarity relations and fuzzy orderings. information sciences, vol. 3 (1971), pp.
177–200. The Journal of Symbolic Logic 38(4), 656–657.

Ha, H., C. Luu, Q. D. Bui, D.-H. Pham, T. Hoang, V.-P. Nguyen, M. T. Vu, and B. T. Pham
(2021). Flash flood susceptibility prediction mapping for a road network using hybrid ma-
chine learning models. Natural hazards 109(1), 1247–1270.

Hu, S., Y. Fan, and T. Zhang (2020). Assessing the effect of land use change on surface runoff
in a rapidly urbanized city: A case study of the central area of beijing. Land 9(1), 17.

Kurte, K., A. Potnis, and S. Durbha (2019). Semantics-enabled spatio-temporal modeling of
earth observation data: An application to flood monitoring. In Proceedings of the 2nd ACM
SIGSPATIAL International Workshop on Advances on Resilient and Intelligent Cities, pp.
41–50.

Merwade, V., F. Olivera, M. Arabi, and S. Edleman (2008). Uncertainty in flood inundation
mapping: current issues and future directions. Journal of Hydrologic Engineering 13(7),
608–620.

Miau, S. and W.-H. Hung (2020). River flooding forecasting and anomaly detection based on
deep learning. IEEE Access 8, 198384–198402.

Moreira, L. L., M. M. de Brito, and M. Kobiyama (2021). A systematic review and future
prospects of flood vulnerability indices. Natural Hazards and Earth System Sciences 21(5),
1513–1530.

Randell, D. A., Z. Cui, and A. G. Cohn (1992). A spatial logic based on regions and connection.
KR 92, 165–176.

Shafer, G. (1976). A mathematical theory of evidence, Volume 42. Princeton university press.
Shen, X., D. Wang, K. Mao, E. Anagnostou, and Y. Hong (2019). Inundation extent mapping

by synthetic aperture radar: A review. Remote Sensing 11(7), 879.
Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and sys-

tems 1(1), 3–28.
Zhang, Y., Y. Wang, Y. Chen, Y. Xu, G. Zhang, Q. Lin, and R. Luo (2021). Projection of

changes in flash flood occurrence under climate change at tourist attractions. Journal of
Hydrology 595, 126039.

Résumé


